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The detailed flow fields associated with instability in axisymmetric jets 
are realized by numerical integration of the time-dependent Navier-Stokes 
equations. 

The mechanism of amplification of small disturbances is shown to be two- 
dimensional for a thin boundary layer profile and conclusions regarding three- 
dimensionality which have been inferred from recent models of axisymmetrical 
systems are clarified. 

The computed flow field is shown to be dominat,ed by the large-scale vortex 
ring structure which has been observed experimentally. Although the wave- 
length of vortex shedding is found to  be slightly variable owing to the 
randomness of the initial perturbation, the results are shown to agree closely 
with experiment. 

1. Introduction 
The experimental study of instability and transition to turbulence in circular 

jets and the observation of persistent orderly structure in the turbulent regime 
have resulted in an extensive literature by many authors. However, theoretical 
studies have, as always, been limited by the intractability of the Navier-Stokes 
equations and only two approximate time-dependent solutions have been ob- 
tained. The first is that  of classical linearized theory to which the major contribu- 
tion is found in the paper by Batchelor & Gill (1962) and the second involves the 
inviscid representation of the flow by discrete arrays of point vortices and is 
typified by the work of Beavers & Wilson (1970). I n  the present paper the effects 
of both nonlinearity and viscosity are investigated by numerical integration of 
the complete time-dependent equations. 

The model is limited to  axisymmetrical flow since, with the present generation 
of high-speed computers, the analysis of three-dimensional unsteady flows 
requires prohibitive amounts of computer storage and time. This limitation 
immediately raises the question of whether the model can provide physically 
realistic solutions. The answer has been given, in part, by Batchelor & Gill 
since their analysis predicts that a ' top-hat ' jet profile will amplify axisymmetric 
disturbances but that, for profiles varying slowly in a radial direction, only 
non-axisymmetric types of instability are possible. These results have been 
confirmed experimentally by Crow & Champagne (1971). 

The geometrical restriction also removes any possibility of studying the effects 
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of vortex stretching. However, Browand (1966) found, in his study of a sepa- 
rated shear layer, that many of the nonlinear features observed could, in fact, 
be explained in terms of purely two-dimensional mechanisms. This is also true 
of the results obtained by Crow & Champagne which indicate large-scale orderly 
structure evolving through several modes over a very wide range of Reynolds 
number. Thus following the terminology of Coles (1965) the free shear layer 
transition may be described as a ‘spectral evolution’ rather than the ‘catas- 
trophic transition ’ which typifies wall flows. Therefore, it appears that, although 
vortex stretching is neglected in the present case, many of the experimentally 
observed features may still be modelled by the axisymmetrical geometry. 

The numerical integration is carried out by the method of finite differences 
and thus the results are inherently limited in temporal and spatial resolution. 
This is particularly obvious for the spatial case since the typical dimensions of 
fine-scale turbulence are orders of magnitude smaller than the smallest grid 
spacings that can be considered. However, again considering the experimental 
results it is clear that, for the particular geometry chosen, the high wavenumber 
cut-off should not seriously affect the validity of the results. 

2. Basic equations 
The basic equations are the Navier-Stokes equations expressed in terms of the 

Stokes stream function, 9, and of the vorticity, w .  The vorticity transport equa- 
tion in cylindrical co-ordinates is 

where 

ao a a 
at ax -+- (uw)+-(vw) ar = 2- Re (v%-;), 

u and v denote the velocity components in the axial and radial directions, z and r ,  
respectively. The Reynolds number, Re, is based on the nozzle diameter D, the 
kinematic viscosity v, and the potential nozzle velocity U,. All quantities are 
dimensionless with reference to D and U,. The velocities are related to the 
stream function by 

The stream function therefore satisfies the following equation : 
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3. The finite difference equations 
The basic set of equations to be solved comprises equations ( l ) ,  ( 3 )  and ( 4 ) .  

The finite difference form of this set varies to a certain extent spatially owing to 
boundary conditions (see 5 4) but in general the method is based upon the work 
of Fromm ( l969b)  and is as follows. 

Specification of the mesh of points at  which variables may be defined is given 
schematically in figure 1 .  Hence, the difference approximation of equation (4) 
is 

The index k specifies the time step number, and a and fa the spatial increments 
in the axial and radial directions respectively. In  equation ( 1 )  the diffusion 
part is represented in an analogous manner to (5 ) ,  i.e. 

The approximation of the convective terms is identical to that of Fromm (1969 b )  
(i.e. of fourth-order, explicit form) and therefore the left-hand side of equation 
( 1 ) gives 

where F denotes the following general notation : 

a 
q - & , j , k  = [ A W i - 2 , j , k  f Bui - l , j ,  k -k cWi,j,kl 

with 
A = & ( - a - & a 2 + 0 1 3 + & a 4 ) ,  

B = (Ba+"$- 3 *a4), 

c = L ( 7 a - 1 5  2 a 2 - - 3 + Q a 4 ) ,  
1 2  

and a = a i t , j , k  = 6) ui+, j ,  k' 

The values of ZL<+&,~,~ and v i , j y , k  as required in equation (7) may be obtained 
by averaging over the four nearest nodes and can subsequently be written in 
terms of the stream function by using equation (3), e.g. 
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4. Initial and boundary conditions 
The specification of boundary conditions for the type of physical field dis- 

cussed in this paper presents a great many difficulties. Ideally, one would like 
to obtain the solution to the problem of a jet discharging into an infinite medium. 
However, the method of approach requires that the problem be transformed into 
a pseudo boundary-value problem within the domain of the computational grid. 

I n  order to obtain a determinate system some approximations have to be made 
along the edges of the grid. 

(a )  Dealing first with ED (see figure l), the problem arises that a2w/az2 and 
a2@/az2 (which appear in equations (1) and (4) respectively) cannot be evaluated 
using space-centred differences (see equations (5) and (6)) since no mesh points 
exist beyond ED. However, it is known that these second derivatives are small 
everywhere and therefore one can make the empirical approximation that, along 
ED, they may be neglected in comparison with the other terms appearing on 
the right-hand sides of equations (1) and (4), i.e. 

a2@ l a +  
a*<---- 322 3r2 r ar’  (9) 

From a computational point of view this is equivalent to setting both ii2w/az2 
and a2+/az2 equal to zero on ED. This approximation should not be interpreted 
as a rigorous boundary condition imposed on the problem (which would exclude 
certain solutions) but rather as an approximation to the values of the appropriate 
terms in the equations of motion. The vorticity equation is still solved numerically 
along ED although the convective terms are now approximated by simple one- 
sided differences as follows: 

( b )  Along CD a similar problem arises and in this near irrotational region the 
following empirical values are used in solving the equations of motion : 

Again one-sided differencing is applied to the vorticity equation. 

the no-slip equation: 
( c )  Along BC, i.e. the horizontal wall adjacent to the jet, equation (4) yields 

Several different formulations of this equation have been used in the present 
model including the Taylor series expansion employed previously by Gerrard 
(1971) and Macagno & Hung (1967). However the simpler formula derived 
from Lagrange’s interpolation formula (see Roache 1972) has proved equally 
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a= Az 

i 

j 
FIGURE 1. Computational grid for jet half-apace. 

successful for this very slow-flow region. Representing the wall surface by the 
subscript I, one obtains 

w I , j , k  = e. 1 7  ( -?i$I,  j , k  + ‘@I+l,j,k - $ $ I + 2 , j , k ) .  (14) 

(a) Along AB, i.e. the jet orifice, the initial profiles of the dependent variables 
are stated in the form w = w ( r )  and $ = $(r)  only. At point B the vorticity is 
fixed to be zero, i.e. separation of the flow is forced a t  the corner. 

( e )  Second-order terms. At the mesh points next to the wall and outflow 
regions there are insufficient adjacent points to use fourth-order approxima- 
tions and thus the procedure used by Fromm (1969 b )  has been adopted whereby 
five-point second-order approximations are applied, i.e. the two-dimensional 
form of Leith’s method (Roache 1972). 

5. Iteration technique 
At each step in time the vorticity function is advanced directly on integration 

of equat.ion (1) and by using these new results the stream function is then evalu- 
ated by successive point over-relaxation (Pox 1962). 
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An error estimate, Q, is first obtained from equation (5), i.e. 

+ki+~, i ,~-2k~, i ,k+ki -~ ,~ ,k-k i . i -~ .~-  ki,i+l,k 
a2 2rj fa 

The new stream function is hence 

$?tl = @?.-$ya2riQtj - (16) 
% I  & 3  ( $I7 

where y is the over-relaxation factor and n is the iteration index. The iteration 
procedure follows a row-by-row sweep of the computational grid and is termi- 
nated when the modifications to 11f fall below a certain predetermined threshold. 
A value of 1.52 for y has been used throughout. 

6. Streaklines 
The motion of a particle is governed by the differential equations 

where u and v are given by equation (3).  z(t) and r ( t )  denote the position of the 
particle a t  time t. In  order to compute a streakline, appropriate initial conditions 
are defined, viz. 

z( to )  = zo and r ( to)  = ro (19) 

and particles are introduced a t  this point a t  predetermined intervals of time. 
The particle paths are then calculated a t  each time step by simple forward 
differencing of equations (17) and (18) using linear interpolation over four 
adjacent points for the velocity contributions. 

7. Numerical accuracy and stability 
The basic difference scheme has been chosen so as to minimize phase error 

effects as much as possible since these are the primary cause of computational 
noise. Obviously this is of prime importance where large-scale periodic behaviour 
is expected to dominate. 

The computational stability of the linearized finite difference equations can 
be analysed using the stability analysis of von Neumann, i.e. vorticity transport 
is assumed to take place with u and v locally constant. Unfortunately the 
complexity of the fourth-order schemes makes the algebraic solution of the am- 
plification matrix completely intractable and thus a numerical evaluation of the 
stability bounds of the matrix is necessary. These have been well documented 
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by Fromm ( 1 9 6 9 ~ )  for the equations in the absence of molecular diffusion. The 
diffusional terms by themselves result in the familiar limit (see Gerrard 1971) 

At < Ka2Re, (20) 

where K is approximately constant. Equation (20) implies that the maximum 
rate of diffusion is limited to an advance of one mesh length per time step. 

In the present model, however, the maximum permissible time step is governed 
not by the fourth-order differences buh by the behaviour of the second-order 
difference equations required near the boundaries of the grid (94 ( e ) ) .  The differ- 
ence scheme is the two-dimensional form of Leith's method, which is known to be 
unconditionally unstable in the absence of viscous forces unless a time-splitting 
approach is adopted. However, by inclusion of the viscous terms this inherent 
instability can be da,mped without recourse to the time-splitting form. By retain- 
ing only the contributions of the second derivatives in equation (6), and by ex- 
panding for small wavenumbers, wave analysis then gives the following analytical 
limit : 

where p is the radial equivalent of equation (8). This equation has been found 
to agree extremely closely with upper bounds obtained directly from computa- 
tions with the full nonlinear equations. 

Finally, in $ 5  it wa,s stated that the iterative sequence is terminated when 
successive modifications to $ fall below a certain predetermined threshold. 
This value is expressed by the maximum allowable error bound on and the 
present results have been obtained using 1st j l  6 0.03. 

8. Results and discussion 
Several initial velocity profiles have been modelled with markedly differing 

results and these can be explained in terms of the specific profiles shown in figure 
2. It may be seen that, since the vorticity is constrained to be zero at the corner 
( Q  4 (d ) ) ,  the depicted velocity profiles show no discontinuity a t  this point. How- 
ever, in terms of finite differences this degree of precision could only be achieved 
with an unacceptably fine mesh size and therefore a lower accuracy must be 
tolerated in this localized region than in the rest of the computational grid. 

The results discussed below have all been obtained using radial increment's 
of A. Two values for the axial increments have been used, namely, a = 

and a = 4. The computational half-space comprised 21 radial increments and 
either 81 axial increments (for a = A) or 41 axial increments (for a = 4). 

The steady-state (laminar) solution a t  a Reynolds number of 600 for profile I 
is plotted in terms of the stream function in figure 3 (all figures will refer to  
a = & unless otherwise stated). The equivalent result for profile I1 is shown in 
figure 4 t  and the corresponding isodines, or contours or constant vorticity, are 

t The numbers on the computer-drawn curves in this and other figures are not intended 
to be legible, but it may help the reader to know that the increments in the dependent 
variable between neighbouring curves are all equal. 
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TlD 

FIGURE 2. Initial velocity profiles. 

M .-- s 

FIGURE 3. Stream function, Reynolds number = 600, laminar flow (velocity profile I). 

shown in figure 5. The Reynolds number of 400 which is represented in figure 6 
is the critical value of that number for profile I1 since any increase immediately 
results in prolonged unstable flow. Of course, the field of view is limited to the 
domain of integration and thus the concept of a critical value must be accepted 
with this limitation. I n  figures 6(a) and ( b )  the subsequent effects of a step func- 
tion increase in Reynolds number from 400 to 450 a t  zero time are plotted. The 
contour denoted by a value of - 1-70 demonstrates the delineation of fluid 
dynamic instability by an initial stretching out (figure 6 (a ) )  of the isodine until 
eventually it sheds the detached vortex shown in figure 6 (b) .  
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FIGURE 4. Stream function, Reynolds number = 400, laminar flow (velocity profile 11). 

FIGURE 5. Isodines, Reynolds number = 400, laminar flow (velocity profile 11). 

Figures 7 (a)-(g) show the vorticity history (again for profile 11) a t  a Reynolds 
number of 1400 and the fundamental mechanism of instability is again clearly 
apparent. It is also clear from these results and the corresponding streamlines 
of figure 8 that a large-scale quasi-periodic structure is predominant. 

I n  figure 9 an instantaneous vorticity distribution for profile I1 at a Reynolds 
number of 1400 but computed with a = Q is plotted. The same overall quasi- 
periodic structure is again apparent although the vorticity distribution is much 
'noisier' than in figure 7.  Although the average wavelength of the periodicity 
is the same as that of the more accurate grid the introduction of much larger 
errors can be established from the behaviour of the vortex centres as they are 
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( b )  

FIGURE 6. Isodines, Reynolds number = 450 (velocity profile 11). (a) Time = 1.0; 
( b )  time = 1.5. 

convected downstream. For the finer mesh the centres show a slow decay as one 
would expect whereas several of those in figure 9 undergo an increase in vorticity 
which is, of course, excluded physically owing to  the two-dimensional geometry. 
Nevertheless the onset of instability and the basic large-scale behaviour is 
consistent for the two mesh sizes. 
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(c) 
FIQURES 7(a)-(c). For legend see p. 719. 



718 A .  J .  Grant 

(f) 
FIGURES 7 ( d ) - ( f ) .  For legend see next page. 



A numerical model of instability in axisymmetric jets 719 

( 9 )  

FIGURE 7. Isoclines, Reynolds number = 1400 (velocity profile 11). (a )  Time = 0.6;  ( b )  time = 
1.0; ( c )  time = 1-2; (d )  time = 1.5; (e) time = 1.8; ( f )  time = 2.1; (9)  time = 2.4. 

FIGURE 8. Stream function, Reynolds number = 1400, time = 1.0 (velocity profile 11). 

The amplijication of snzall disturbances 

Initially it was expected that, at  some critical Reynolds number, any 'small 
disturbances ' in the system (e.g. numerical round-off errors) would be amplified 
and hence an unsteady state would be established, and it is clear from the discus- 
sion above that, for profile 11, this has indeed occurred. However, profile1 
exhibited no such instability and, instead, all solutions tended asymptotically 
towards a steady state, a t  least for the Reynolds numbers investigated, which 
were limited to a maximum value of 2500. 
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FIGURE 9. Isodines, Reynolds number = 1400, time = 0.8 (velocity profile 11). 
1 

This failure to exhibit instability has also been found in two other numerical 
solutions of axisymmetrical flows. In  the first example Rimon obtained solutions 
for the flow past both a sphere (Rimon & Cheng 1969) and a thin oblate spheroid 
(Rimon 1969); more recently Gerrard (1971) has investigated the motion from rest 
of a piston in a cylindrical tube. Rimon found it possible to simulate the initial 
stationary vortex system which is characteristic of blunt-body flows but failed 
entirely to model any shedding of vorticity. Gerrard encountered the same 
difficulty in his configuration but found further that the introduction of ‘ artificial’ 
disturbances into his system in the form of deliberately added random noise 
immediately caused shedding to take place. Following this example, random noise 
was also added to the present model with profile I and again vortex shedding 
became apparent. It should be noted that the resultant deviations from a laminar 
structure were several orders of magnitude greater than the disturbance level. 

It has been suggested by Gerrard that this behaviour can be attributed to the 
fact that “amplification is a three-dimensional effect which is excluded by the 
present (axisymmetric) computing method and has to be introduced artificially 
as random disturbances”. Rimon, on the other hand, concluded that “the shed- 
ding of vorticity is a three-dimensional effect caused by three-dimensional 
disturbances”. It is certainly now clear that vortex shedding can be two-dimen- 
sional and one may also conclude that the amplification mechanism can, as 
postulated by Batchelor & Gill, be two-dimensional given a ‘thin’ boundary 
layer profile. 

The experiments of Crow & Champagne on water jets issuing from a glass tube 
showed that, with increasing Reynolds number, the evolution of an axisymmetric 
column of ring vortices may first occur through a helical mode. This three- 
dimensional amplification, which is excluded numerically and which corresponds 
to a thick boundary layer, shows that the conclusions reached by Gerrard and 
Rimon may well be correct for certain geometries but are not valid in any 
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generalized sense. It may be noted that the experiments of Becker & Massaro 
(1 968) using a high contraction-ratio nozzle only demonstrated axisymmetrical 
instability. 

Comparison with experiment 
As mentioned earlier, the structure shown in figure 7 is not exactly periodic, 
i.e. successive wavelengths vary to a certain extent. This verifies the belief 
expressed in the previous section that the structure is triggered by numerical 
‘noise’. It also demonstrates the experimental advantages of acoustic forcing, 
i.e. phase locking, in order to obtain stroboscopic visualization. The strength 
of the individual vortices may also be seen to vary. 

The dimensionless wavenumber, ITD~A,  for the natural growth exhibited in 
figures 7 and 8 varies between 2.1 and 2.8 and this range agrees well with the 
value of 2.6 which has been found by Grant, Jones & Rosenfeld (1973), in jets 
with Reynolds numbers less than 2 x 104. Crow & Champagne state a value of 1.3 
for Reynolds numbers in the range 104-105. This low value may well be due to 
an induction effect (see Becker & Massaro) whereby two vortices coalesce, 
thus causing an effective doubling of the wavelength. This has not been observed 
in the computed results but is probably excluded owing to the low Reynolds 
numbers that can be investigated, although it may also be a function of the 
disturbance level present in the experimental set-up. Figure 7 also implies a 
Strouhal number of about 0.55, which again agrees closely with the experimental 
value of 0.52 found by Grant et al. A flow a t  a Reynolds number of 1400 has also 
been observed experimentally by Beavers & Wilson, who obtained a Strouhal 
number of 0.63 using a sharp-edged circular orifice. These results may again be 
contrasted with the preferred value of 0.30 found by Crow & Champagne. 

Secondary instabilities are recognizable in figures 7 (b) ,  (c)  and ( d )  where 
smaller vortex ‘islands’ are apparent in the intervals between the main vortices. 
These result from the way in which the isodines are drawn out to form elliptical 
islands with pronounced ‘tails’ which then detach to form secondary regions. 
At the flow rates shown these weak regions are quickly dissipated by molecular 
diffusion but one may conjecture that a t  higher rates they play a major part in 
producing inductive effects. An analogous effect has been computed by Fromm 
(1967) in a planar shear layer. 

Any direct comparison with experimentally evaluated critical Reynolds 
numbers must be viewed carefully in the light of the findings discussed above. 
One must have equivalence of both initial boundary-layer thickness, i.e. vorticity 
distribution, and also disturbance amplitude and dimensionality before any 
conclusions can be drawn. For example, Viilu (1962) quotes a critical Reynolds 
number of about 11 but he almost certainly had Poiseuille flow at the nozzle 
exit and consequently a spiral instability. However, the present value does 
agree extremely well with the results of Beavers & Wilson for a very thin bound- 
ary layer. They found that, for Reynolds numbers between approximately 400 
and 500, small irregularities became apparent in the flow and these occasionally 
broke up to form a small part of a column of vortex rings. They found further 
that these bursts occurred at random intervals over a very small range of 
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0.2 u 
3-0 3.2 3-4 3.6 

(c) 1=4.3 

( d )  ?=50 

FIGURE 10. Streakline growth from (7, z )  = (+, 3), Reynolds number = 1850. 

Reynolds numbers and that any subsequent increase in Reynolds number pro- 
duced an uninterrupted train of vortex rings. Since Becker & Massaro found a 
critical value of about 600, one can, a t  least, say that the present predictions are 
within an experimentally acceptable range. 

From an experimental viewpoint a system of axisymmetrical vortex rings is 
usually visualized by the introduction of smoke or dye into the flow. The calcula- 
tion of such dyelines or streaklines has been discussed in $6  and is straight- 
forward. However, the procedure demands extremely large amounts of computer 
time and storage if a large region of the flow field is to be mapped. Therefore, 
at present, the results have been limited to a small part of the free shear layer. 

Figure 10 shows the evolution of a streakline for a series of particles released a t  
( r , z )  = ($,3) and the familiar rolling-up process which is typical of the point 
vortex model of Beavers & Wilson is displayed. In  figure lO(c) the pathline of 
the initial particle is also traced and its simple trajectory underlines the com- 
ments of Hama (1962) on the intricacies of interpreting results which are due to 
purely relative motions. Indeed, Hama has shown that the rolling-up of a streak- 
line is a necessary but not a sufficient condition for the existence of vorticity 
concentrations and of the formation of discrete vortices. Figure 11 shows a com- 
parison between streakline behaviour and vorticity distribution at an instant in 
time and it can be seen that for this particular flow the streakIine ‘spirals’ and 
vorticity maxima are coincident. 

Finally, in assessing any results from a model of the type discussed in this paper 
one must take into account the somewhat heuristic specification of boundary 
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FIGURE 11. Streakline and vorticity relationship, Reynolds number 1850, 
time = 4.5. 

conditions. This is important not only from the standpoint of the creation of 
numerical instabilities a t  the boundaries but also in the generation of parasitic 
eigenfunctions due to the transformation of a semi-infinite problem into a limited 
domain boundary-value problem. In  the present model the problem of instability 
of the boundaries has not, in fact, arisen although it is particularly clear in 
figures 4 and 8 that in the vicinity of the separation streamline a t  the jet exit 
there is a local distortion of the flow due purely to numerical inaccuracy. How- 
ever the eigenfunction nature of the problem is a much more significant effect. 

Figure 3 shows the laminar flow streamlines corresponding to velocity profile 
I and it may be seen that the fluid entrained across the boundary, CD, is flowing 
reasonably parallel to the wall, BC, as one might intuitively expect. The stream- 
lines are in fact showing a slight tendency to form a very large recirculation 
region, which is not altogether surprising since they must, by definition, be closed, 
i.e. they cannot terminate a t  a point in the flow. In  figures 4 and 8, which show 
streamline behaviour for profile 11, the recirculation region has become much 
smaller and one must question whether the calculated streamlines in the outer 
region are now representative of the real flow field. The approximation applied 
along CD (i.e. equation (12)) was reformulated to assume that the axial velocity 
changed little in a mesh width but this produced a symmetry condition along the 
boundary, thus reducing the recirculation region even more. However, the com- 
puted vorticity in this outer region was found to be, in all cases, negligible in 
comparison with that of the shear layer, and hence one may conclude that any 
eigenfunction effect on the actual jet transition is negligible although the far- 
field streamline behaviour is extremely dependent on the chosen boundary 
conditions. 

This conclusion is borne out by the experimental studies of Iribarne et al. 
(1972) on the behaviour of an axisymmetrical pipe jet. Their results show the 
same basic large-scale vortex structure in the initial region of the jet as is found 
in the present study. Only at the region of re-attachment to the outer pipe wall 
does the basic structure break down and this may be attributed to the action of 
the wall vorticity. 
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